Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 891, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291026

RESUMEN

Procaspase 9 is the initiator caspase for apoptosis, but how its levels and activities are maintained remains unclear. The gigantic Inhibitor-of-Apoptosis Protein BIRC6/BRUCE/Apollon inhibits both apoptosis and autophagy by promoting ubiquitylation of proapoptotic factors and the key autophagic protein LC3, respectively. Here we show that BIRC6 forms an anti-parallel U-shaped dimer with multiple previously unannotated domains, including a ubiquitin-like domain, and the proapoptotic factor Smac/DIABLO binds BIRC6 in the central cavity. Notably, Smac outcompetes the effector caspase 3 and the pro-apoptotic protease HtrA2, but not procaspase 9, for binding BIRC6 in cells. BIRC6 also binds LC3 through its LC3-interacting region, probably following dimer disruption of this BIRC6 region. Mutation at LC3 ubiquitylation site promotes autophagy and autophagic degradation of BIRC6. Moreover, induction of autophagy promotes autophagic degradation of BIRC6 and caspase 9, but not of other effector caspases. These results are important to understand how the balance between apoptosis and autophagy is regulated under pathophysiological conditions.


Asunto(s)
Apoptosis , Proteínas Inhibidoras de la Apoptosis , Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Caspasas/metabolismo , Autofagia/genética , Ubiquitinación , Proteínas Mitocondriales/metabolismo
2.
Cells ; 12(18)2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37759433

RESUMEN

Autophagy is critical to acrosome biogenesis and mitochondrial quality control, but the underlying mechanisms remain unclear. The ubiquitin ligase Nrdp1/RNF41 promotes ubiquitination of the mitophagy-associated Parkin and interacts with the pro-autophagic protein SIP/CacyBP. Here, we report that global deletion of Nrdp1 leads to formation of the round-headed sperm and male infertility by disrupting autophagy. Quantitative proteome analyses demonstrated that the expression of many proteins associated with mitochondria, lysosomes, and acrosomes was dysregulated in either spermatids or sperm of the Nrdp1-deficient mice. Deletion of Nrdp1 increased the levels of Parkin but decreased the levels of SIP, the mitochondrial fission protein Drp1 and the mitochondrial protein Tim23 in sperm, accompanied by the inhibition of autophagy, the impairment of acrosome biogenesis and the disruption of mitochondrial arrangement in sperm. Thus, our results uncover an essential role of Nrdp1 in spermiogenesis and male fertility by promoting autophagy, providing important clues to cope with the related male reproductive diseases.


Asunto(s)
Acrosoma , Espermatogénesis , Ubiquitina-Proteína Ligasas , Animales , Masculino , Ratones , Autofagia , Mitocondrias/metabolismo , Semen/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Science ; 378(6616): eabq0132, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36227980

RESUMEN

The inflammasome-mediated cleavage of gasdermin D (GSDMD) causes pyroptosis and inflammatory cytokine release to control pathogen infection, but how pathogens evade this immune response remains largely unexplored. Here we identify the known protein phosphatase PtpB from Mycobacterium tuberculosis as a phospholipid phosphatase inhibiting the host inflammasome-pyroptosis pathway. Mechanistically, PtpB dephosphorylated phosphatidylinositol-4-monophosphate and phosphatidylinositol-(4,5)-bisphosphate in host cell membrane, thus disrupting the membrane localization of the cleaved GSDMD to inhibit cytokine release and pyroptosis of macrophages. Notably, this phosphatase activity requires PtpB binding to ubiquitin. Disrupting phospholipid phosphatase activity or the ubiquitin-interacting motif of PtpB enhanced host GSDMD-dependent immune responses and reduced intracellular pathogen survival. Thus, pathogens inhibit pyroptosis and counteract host immunity by altering host membrane composition.


Asunto(s)
Inflamasomas , Piroptosis , Citocinas/metabolismo , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Fosfolípidos , Monoéster Fosfórico Hidrolasas/metabolismo , Ubiquitina/metabolismo
4.
EMBO Rep ; 22(6): e52175, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33938130

RESUMEN

Upon Mycobacterium tuberculosis (Mtb) infection, protein kinase G (PknG), a eukaryotic-type serine-threonine protein kinase (STPK), is secreted into host macrophages to promote intracellular survival of the pathogen. However, the mechanisms underlying this PknG-host interaction remain unclear. Here, we demonstrate that PknG serves both as a ubiquitin-activating enzyme (E1) and a ubiquitin ligase (E3) to trigger the ubiquitination and degradation of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TGF-ß-activated kinase 1 (TAK1), thereby inhibiting the activation of NF-κB signaling and host innate responses. PknG promotes the attachment of ubiquitin (Ub) to the ubiquitin-conjugating enzyme (E2) UbcH7 via an isopeptide bond (UbcH7 K82-Ub), rather than the usual C86-Ub thiol-ester bond. PknG induces the discharge of Ub from UbcH7 by acting as an isopeptidase, before attaching Ub to its substrates. These results demonstrate that PknG acts as an unusual ubiquitinating enzyme to remove key components of the innate immunity system, thus providing a potential target for tuberculosis treatment.


Asunto(s)
Mycobacterium tuberculosis , Proteínas Quinasas Dependientes de GMP Cíclico , Mycobacterium tuberculosis/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
Theranostics ; 11(3): 1458-1472, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391545

RESUMEN

The epigenetic inheritance relies on stability of histone marks, but various diseases, including aging-related disorders, are usually associated with alterations of histone marks. Whether and how the proteasome is responsible for maintaining the histone marks during transcription and aging remain unclear. The core histones can be degraded by the atypical proteasome, which contains the proteasome activator PA200, in an acetylation-dependent manner during somatic DNA damage response and spermiogenesis. Methods: By utilizing a substitute of methionine to label proteins metabolically, we analyzed histone degradation genome-wide by sequencing the DNA fragments following pulse-chase assays. The genome-wide RNA-sequencing analysis was performed to analyze transcription and chromatin-immunoprecipitation (ChIP)-sequencing was used for analyses of histone marks. The experimental models included gene-manipulated cells (including both mouse and yeast), mouse liver, and mice. Results: Degradation of H4 or the transcription-coupled histone variant H3.3 could be suppressed by deletion of PA200 or its yeast ortholog Blm10. The histone deacetylase inhibitor accelerated the degradation rates of H3, while the mutations of the putative acetyl-lysine-binding region of PA200 abolished histone degradation in the G1-arrested cells. Deletion of PA200 dramatically altered deposition of the active transcriptional hallmarks (H3K4me3 and H3K56ac) and transcription, especially during cellular aging. Furthermore, deletion of PA200 or Blm10 accelerated cellular aging. Notably, the PA200-deficient mice displayed a range of aging-related deteriorations, including immune malfunction, anxiety-like behavior and shorter lifespan. Conclusion: PA200 promotes the transcription-coupled degradation of the core histones, and plays an important role in maintaining the stability of histone marks during transcription and aging.


Asunto(s)
Envejecimiento/genética , Código de Histonas/genética , Histonas/genética , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/genética , Transcripción Genética/genética , Acetilación , Animales , Lisina/genética , Ratones
6.
Curr Genomics ; 22(4): 306-317, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-35273461

RESUMEN

Background: Histones are basic elements of the chromatin and are critical to controlling chromatin structure and transcription. The proteasome activator PA200 promotes the acetylation-dependent proteasomal degradation of the core histones during spermatogenesis, DNA repair, transcription, and cellular aging and maintains the stability of histone marks. Objective: The study aimed to explore whether the yeast ortholog of PA200, Blm10, promotes degradation of the core histones during transcription and regulates transcription especially during aging. Methods: Protein degradation assays were performed to detect the role of Blm10 in histone degradation during transcription. mRNA profiles were compared in WT and mutant BY4741 or MDY510 yeast cells by RNA-sequencing. Results: The core histones can be degraded by the Blm10-proteasome in the non-replicating yeast, suggesting that Blm10 promotes the transcription-coupled degradation of the core histones. Blm10 preferentially regulates transcription in aged yeast, especially transcription of genes related to translation, amino acid metabolism, and carbohydrate metabolism. Mutations of Blm10 at F2125/N2126 in its putative acetyl-lysine binding region abolished the Blm10-mediated regulation of gene expression. Conclusion: Blm10 promotes degradation of the core histones during transcription and regulates transcription, especially during cellular aging, further supporting the critical role of PA200 in maintaining the stability of histone marks from the evolutionary view. These results should provide meaningful insights into the mechanisms underlying aging and the related diseases.

7.
J Biol Chem ; 296: 100130, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33262216

RESUMEN

Meiosis, which produces haploid progeny, is critical to ensuring both faithful genome transmission and genetic diversity. Proteasomes play critical roles at various stages of spermatogenesis, including meiosis, but the underlying mechanisms remain unclear. The atypical proteasomes, which contain the activator PA200, catalyze the acetylation-dependent degradation of the core histones in elongated spermatids and DNA repair in somatic cells. We show here that the testis-specific proteasome subunit α4s/PSMA8 is essential for male fertility by promoting proper formation of spermatoproteasomes, which harbor both PA200 and constitutive catalytic subunits. Immunostaining of a spermatocyte marker, SYCP3, indicated that meiosis was halted at the stage of spermatocytes in the α4s-deficient testes. α4s stimulated the in vitro degradation of the acetylated core histones, instead of nonacetylated histones, by the PA200-proteasome. Deletion of α4s blocked degradation of the core histones at DNA damage loci in spermatocytes, leading to meiotic arrest at metaphase I. Thus, α4s is required for histone degradation at meiotic DNA damage loci, proper progression of meiosis, and fertility in males by promoting proper formation of spermatoproteasomes. These results are important for understanding male infertility and might provide potential targets for male contraception or treatment of male infertility.


Asunto(s)
Reparación del ADN , Histonas/metabolismo , Infertilidad Masculina/patología , Meiosis , Complejo de la Endopetidasa Proteasomal/metabolismo , Espermatocitos/citología , Espermatogénesis , Animales , Daño del ADN , Infertilidad Masculina/etiología , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Complejo de la Endopetidasa Proteasomal/genética , Espermátides , Espermatocitos/metabolismo
8.
Biochem Biophys Res Commun ; 532(2): 211-218, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32861419

RESUMEN

Cellular aging is associated with the damage to DNA, decline in proteasome activity, loss of histones and alteration of epigenetic marks. The atypical proteasome with the activator PA200 in mammals or its ortholog Blm10 in yeast promotes the acetylation-dependent degradation of the core histones during DNA repair or spermiogenesis. We show here that loss of PA200 or Blm10 is the leading cause of the decline in proteasome activity during aging, the latter of which conversely induces the transcription of Blm10. The transcription factor Crt1 suppressed, but the proteasome subunit Rpn4 promoted, the transcription of Blm10. On the contrary to deletion of Rpn4, deletion of Crt1 elevated Blm10 transcription upon DNA damage, reduced core histone levels during aging, and prolonged replicative lifespan. These results suggest that cells can antagonize aging by up-regulating transcription of Blm10, providing important insights into the mechanisms of aging and the aging-related diseases.


Asunto(s)
Senescencia Celular/fisiología , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citología , Animales , Células Cultivadas , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación Fúngica de la Expresión Génica , Ratones Endogámicos C57BL , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Regulación hacia Arriba
9.
Proc Natl Acad Sci U S A ; 116(27): 13404-13413, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31213539

RESUMEN

BRUCE/Apollon is a membrane-associated inhibitor of apoptosis protein that is essential for viability and has ubiquitin-conjugating activity. On initiation of apoptosis, the ubiquitin ligase Nrdp1/RNF41 promotes proteasomal degradation of BRUCE. Here we demonstrate that BRUCE together with the proteasome activator PA28γ causes proteasomal degradation of LC3-I and thus inhibits autophagy. LC3-I on the phagophore membrane is conjugated to phosphatidylethanolamine to form LC3-II, which is required for the formation of autophagosomes and selective recruitment of substrates. SIP/CacyBP is a ubiquitination-related protein that is highly expressed in neurons and various tumors. Under normal conditions, SIP inhibits the ubiquitination and degradation of BRUCE, probably by blocking the binding of Nrdp1 to BRUCE. On DNA damage by topoisomerase inhibitors, Nrdp1 causes monoubiquitination of SIP and thus promotes apoptosis. However, on starvation, SIP together with Rab8 enhances the translocation of BRUCE into the recycling endosome, formation of autophagosomes, and degradation of BRUCE by optineurin-mediated autophagy. Accordingly, deletion of SIP in cultured cells reduces the autophagic degradation of damaged mitochondria and cytosolic protein aggregates. Thus, by stimulating proteasomal degradation of LC3-I, BRUCE also inhibits autophagy. Conversely, SIP promotes autophagy by blocking BRUCE-dependent degradation of LC3-I and by enhancing autophagosome formation and autophagic destruction of BRUCE. These actions of BRUCE and SIP represent mechanisms that link the regulation of autophagy and apoptosis under different conditions.


Asunto(s)
Autofagia , Proteínas de Unión al Calcio/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Apoptosis , Autofagosomas/metabolismo , Daño del ADN , Fibroblastos , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Ubiquitinación
10.
J Cell Physiol ; 234(8): 14306-14318, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30701530

RESUMEN

Pathological calcification represents an event that consequently leads to a distinct elevation in the morbidity and mortality of patients with chronic kidney disease (CKD) in addition to strengthening its correlation with hyperphosphatemia. Epigenomic regulation by specific microRNAs (miRNAs) is reported to be involved in ectopic calcification. However, the finer molecular mechanisms governing this event remain unclear. Hence, this study aimed to identify the potential miRNAs involved in vascular calcification (VC) development and progression. Initially, mitochondrial membrane potential (MMP), autophagy-specific markers (LC3II/LC3I and Beclin1) and phenotype-specific markers of osteoblasts (runt-related transcription factor 2 and Msx2) were measured to evaluate autophagy and VC in ß-glycerophosphate-induced vascular smooth muscle cells (VSMCs) with either miR-30b restoration or miR-30b knockdown performed in vitro. The VC in vivo was represented by calcified nodule formation in the aorta of the rats undergoing 5/6 nephrectomy followed by a 1.2% phosphorus diet using Alizarin Red staining. SOX9 was verified as the target of miR-30b according to luciferase activity determination. Restoration of miR-30b was revealed to markedly diminish the expression of SOX9 while acting to inhibit activation of the mTOR signaling pathway. Knockdown of miR-30b reduced MMP and autophagy, elevated VC, and suppressed the presence of rapamycin (an inhibitor of the mTOR signaling pathway). In addition, upregulated expression of miR-30b attenuated VC in vivo. Taken together, the key findings of this study identified the inhibitory role of miR-30b in VC, presenting an enhanced understanding of miRNA as a therapeutic target to curtail progressive VC in hyperphosphatemia of CKD.


Asunto(s)
Autofagia/genética , MicroARNs/genética , Insuficiencia Renal Crónica/genética , Calcificación Vascular/genética , Animales , Aorta/metabolismo , Beclina-1/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Epigenómica , Regulación de la Expresión Génica/genética , Glicerofosfatos , Proteínas de Homeodominio/genética , Humanos , Potencial de la Membrana Mitocondrial/genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Osteoblastos/metabolismo , Ratas , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Factor de Transcripción SOX9/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
11.
J Cell Physiol ; 234(4): 3469-3477, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30461014

RESUMEN

In the last 10 years, the prevalence, significance, and regulatory mechanisms of vascular calcification (VC) have gained increasing recognition. The aim of this study is to explore the action of WNT8b in the development of phosphate-induced VC through its effect on vascular smooth muscle cells (VSMCs) in vitro by inactivating the Wnt-ß-catenin signaling pathway. To explore the effect of WNT8b on the Wnt-ß-catenin signaling pathway and VC in vitro, ß-glycerophosphate (GP)-induced T/G HA-VSMCs were treated with small interfering RNA against WNT8b (Si-WNT8b), Wnt-ß-catenin signaling pathway activator (LiCl) and both, respectively. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to determine the messenger RNA and protein levels of WNT8b, α-smooth muscle actin (α-SMA), calcification-associated molecules, and molecules related to the Wnt signaling pathway. The TOP/FOP-Flash reporter assay was performed to detect the transcription activity mediated by ß-catenin. Si-WNT8b reduced calcium deposition and the activity of alkaline phosphatase (ALP), increased the α-SMA level, and decreased bone morphogenetic protein 2, Pit1, MSX2, and Runt-related transcription factor 2 levels, whereas stimulation of LiCl worsened ß-GP-induced calcium deposition, increased the activity of ALP, and reduced the α-SMA expression level. Si-WNT8b reduced the levels of WNT8b, frizzled-4, ß-catenin, phospho-GSK-3ß (p-GSK-3ß), and cyclin-D, whereas it increased the levels of p-ß-catenin and GSK-3ß, indicating that si-WNT8b could alter the Wnt-ß-catenin signaling pathway and thus hamper the VC in T/G HA-VSMC, which was further demonstrated by the TOP/FOP-Flash assay and detection of the ß-catenin expression level in the nucleus. Altogether, we conclude that WNT8b knockdown terminates phosphate-induced VC in VSMCs by inhibiting the Wnt-ß-catenin signaling pathway.


Asunto(s)
Calcio/metabolismo , Glicerofosfatos/toxicidad , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Calcificación Vascular/prevención & control , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Actinas/genética , Actinas/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Interferencia de ARN , Factores de Tiempo , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Proteínas Wnt/genética
12.
Biol Rev Camb Philos Soc ; 93(4): 1765-1777, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29732666

RESUMEN

Proteasomes are responsible for the turnover of most cellular proteins, and thus are critical to almost all cellular activities. A substrate entering the proteasome must first bind to a substrate receptor. Substrate receptors can be classified as ubiquitin receptors and non-ubiquitin receptors. The intrinsic ubiquitin receptors, including proteasome regulatory particle base subunits 1, 10 and 13 (Rpn1, Rpn10, and Rpn13), determine the capability of the proteasome to recognize a ubiquitin chain, and thus provide selectivity for the 26S proteasome. However, the non-ubiquitin receptors, including proteasome activator 200 (PA200) and PA28γ, have received great attention due to their remarkable compensatory roles relative to canonical ubiquitin-mediated proteasomal degradation. Herein we review recent advances in understanding the contributions of these substrate receptors to proteasomal degradation, and introduce their substrates and interacting factors. We also provide insights into their biological functions related to spermatogenesis, immune responses, cellular homeostasis, and tumour development. Finally, we summarize advances in developing small-molecule inhibitors of these substrate receptors and discuss their potential as drug targets.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas Ubiquitinadas/metabolismo , Ubiquitinas/metabolismo , Animales , Humanos , Unión Proteica
13.
Cancer Cell ; 30(3): 474-484, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27622336

RESUMEN

In the cytoplasm of virtually all clear-cell renal cell carcinoma (ccRCC), speckle-type POZ protein (SPOP) is overexpressed and misallocated, which may induce proliferation and promote kidney tumorigenesis. In normal cells, however, SPOP is located in the nucleus and induces apoptosis. Here we show that a structure-based design and subsequent hit optimization yield small molecules that can inhibit the SPOP-substrate protein interaction and can suppress oncogenic SPOP-signaling pathways. These inhibitors kill human ccRCC cells that are dependent on oncogenic cytoplasmic SPOP. Notably, these inhibitors minimally affect the viability of other cells in which SPOP is not accumulated in the cytoplasm. Our findings validate the SPOP-substrate protein interaction as an attractive target specific to ccRCC that may yield novel drug discovery efforts.


Asunto(s)
Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Represoras/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Femenino , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Terapia Molecular Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Autophagy ; 11(10): 1803-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26378614

RESUMEN

Loss-of-function mutations in the gene encoding GBA (glucocerebrosidase, ß, acid), the enzyme deficient in the lysosomal storage disorder Gaucher disease, elevate the risk of Parkinson disease (PD), which is characterized by the misprocessing of SNCA/α-synuclein. However, the mechanistic link between GBA deficiency and SNCA accumulation remains poorly understood. In this study, we found that loss of GBA function resulted in increased levels of SNCA via inhibition of the autophagic pathway in SK-N-SH neuroblastoma cells, primary rat cortical neurons, or the rat striatum. Furthermore, expression of the autophagy pathway component BECN1 was downregulated as a result of the GBA knockdown-induced decrease in glucocerebrosidase activity. Most importantly, inhibition of autophagy by loss of GBA function was associated with PPP2A (protein phosphatase 2A) inactivation via Tyr307 phosphorylation. C2-ceramide (C2), a PPP2A agonist, activated autophagy in GBA-silenced cells, while GBA knockdown-induced SNCA accumulation was reversed by C2 or rapamycin (an autophagy inducer), suggesting that PPP2A plays an important role in the GBA knockdown-mediated inhibition of autophagy. These findings demonstrate that loss of GBA function may contribute to SNCA accumulation through inhibition of autophagy via PPP2A inactivation, thereby providing a mechanistic basis for the increased PD risk associated with GBA deficiency.


Asunto(s)
Autofagia/fisiología , Proteína Fosfatasa 2/metabolismo , alfa-Sinucleína/metabolismo , Animales , Autofagia/genética , Enfermedad de Gaucher/genética , Expresión Génica/fisiología , Glucosilceramidasa/deficiencia , Humanos , Lisosomas/metabolismo , Ratones Transgénicos , Mutación/genética , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Ratas
15.
J Immunol ; 194(8): 3756-67, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25780035

RESUMEN

Crucial to the pathogenesis of the tuberculosis (TB)-causing pathogen Mycobacterium tuberculosis is its ability to subvert host immune defenses to promote its intracellular survival. The mammalian cell entry protein 3E (Mce3E), located in the region of difference 15 of the M. tuberculosis genome and absent in Mycobacterium bovis bacillus Calmette-Guérin, has an essential role in facilitating the internalization of mammalian cells by mycobacteria. However, relatively little is known about the role of Mce3E in modulation of host innate immune responses. In this study, we demonstrate that Mce3E inhibits the activation of the ERK1/2 signaling pathway, leading to the suppression of Tnf and Il6 expression, and the promotion of mycobacterial survival within macrophages. Mce3E interacts and colocalizes with ERK1/2 at the endoplasmic reticulum in a DEF motif (an ERK-docking motif)-dependent manner, relocates ERK1/2 from cytoplasm to the endoplasmic reticulum, and finally reduces the association of ERK1/2 with MEK1 and blocks the nuclear translocation of phospho-ERK1/2. A DEF motif mutant form of Mce3E (F294A) loses its ability to suppress Tnf and Il6 expression and to promote intracellular survival of mycobacteria. Inhibition of the ERK1/2 pathway in macrophages using U0126, a specific inhibitor of the ERK pathway, also leads to the suppressed Tnf and Il6 expression and the enhanced intracellular survival of mycobacteria. Taken together, these results suggest that M. tuberculosis Mce3E exploits the ERK1/2 signaling pathway to suppress host innate immune responses, providing a potential Mce3E-ERK1/2 interface-based drug target against M. tuberculosis.


Asunto(s)
Proteínas Bacterianas/inmunología , Núcleo Celular/inmunología , Inmunidad Innata , Sistema de Señalización de MAP Quinasas/inmunología , Macrófagos/inmunología , Proteína Quinasa 1 Activada por Mitógenos/inmunología , Proteína Quinasa 3 Activada por Mitógenos/inmunología , Mycobacterium tuberculosis/inmunología , Transporte Activo de Núcleo Celular/inmunología , Animales , Butadienos/farmacología , Línea Celular , Sistemas de Liberación de Medicamentos , Regulación de la Expresión Génica , Humanos , Interleucina-6/inmunología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/patología , Ratones , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/inmunología , Mycobacterium bovis/inmunología , Nitrilos/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Tuberculosis/patología , Factor de Necrosis Tumoral alfa/inmunología
16.
Nat Immunol ; 16(3): 237-45, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25642820

RESUMEN

Mycobacterium tuberculosis PtpA, a secreted tyrosine phosphatase essential for tuberculosis pathogenicity, could be an ideal target for a drug against tuberculosis, but its active-site inhibitors lack selectivity over human phosphatases. Here we found that PtpA suppressed innate immunity dependent on pathways of the kinases Jnk and p38 and the transcription factor NF-κB by exploiting host ubiquitin. Binding of PtpA to ubiquitin via a region with no homology to human proteins activated it to dephosphorylate phosphorylated Jnk and p38, leading to suppression of innate immunity. Furthermore, the host adaptor TAB3 mediated NF-κB signaling by sensing ubiquitin chains, and PtpA blocked this process by competitively binding the ubiquitin-interacting domain of TAB3. Our findings reveal how pathogens subvert innate immunity by coopting host ubiquitin and suggest a potential tuberculosis treatment via targeting of ubiquitin-PtpA interfaces.


Asunto(s)
Inmunidad Innata/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Ubiquitina/inmunología , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular , Línea Celular Tumoral , Femenino , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/inmunología , Masculino , Ratones Endogámicos C57BL , FN-kappa B/inmunología , Fosforilación , Transducción de Señal/inmunología , Tuberculosis/microbiología , Células U937
17.
Chin J Cancer ; 32(12): 640-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23816559

RESUMEN

Ubiquitination is crucial for cellular processes, such as protein degradation, apoptosis, autophagy, and cell cycle progression. Dysregulation of the ubiquitination network accounts for the development of numerous diseases, including cancer. Thus, targeting ubiquitination is a promising strategy in cancer therapy. Both apoptosis and autophagy are involved in tumorigenesis and response to cancer therapy. Although both are categorized as types of cell death, autophagy is generally considered to have protective functions, including protecting cells from apoptosis under certain cellular stress conditions. This review highlights recent advances in understanding the regulation of apoptosis and autophagy by ubiquitination.


Asunto(s)
Muerte Celular , Supervivencia Celular , Neoplasias , Ubiquitina/metabolismo , Ubiquitinación , Apoptosis , Autofagia , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Proteolisis
18.
Cell ; 153(5): 1012-24, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706739

RESUMEN

Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes ("spermatoproteasomes") contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic ß subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.


Asunto(s)
Reparación del ADN , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Espermatogénesis , Testículo/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Roturas del ADN de Doble Cadena , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/química , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
19.
J Genet Genomics ; 39(11): 575-80, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23177144

RESUMEN

Histone modifications are proposed to constitute a "histone code" for epigenetic regulation of gene expression. However, recent studies demonstrate that histones have to be disassembled from chromatin during transcription. Recent evidence, though not conclusive, suggests that histones might be degradable after being removed from chromatin during transcription. Degradation of overexpressed excessive histones, instead of native histones, has been shown to be dependent on proteasomes and ubiquitination. Since the 26S proteasome usually recognizes polyubiquitinated substrates, it is critical to demonstrate whether degradation of histones is mediated by polyubiquitination. Unexpectedly, there is almost no evidence that any ubiquitin ligase can promote polyubiquitination-dependent degradation of constitutive histones. Meanwhile, acetylation and phosphorylation are also associated with histone degradation. This review attempts to summarize the current knowledge on the transcription-coupled degradation of histones and its regulation by posttranslational protein modifications.


Asunto(s)
Histonas/metabolismo , Transcripción Genética , Acetilación , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Péptido Hidrolasas/metabolismo , Fosforilación , Poli Adenosina Difosfato Ribosa/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
20.
Mol Biol Cell ; 19(11): 5019-28, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18784250

RESUMEN

Clearance of misfolded proteins from the ER is central for maintenance of cellular homeostasis. This process requires coordinated recognition, ER-cytosol translocation, and finally ubiquitination-dependent proteasomal degradation. Here, we identify an ER resident seven-transmembrane protein (JAMP) that links ER chaperones, channel proteins, ubiquitin ligases, and 26S proteasome subunits, thereby optimizing degradation of misfolded proteins. Elevated JAMP expression promotes localization of proteasomes at the ER, with a concomitant effect on degradation of specific ER-resident misfolded proteins, whereas inhibiting JAMP promotes the opposite response. Correspondingly, a jamp-1 deleted Caenorhabditis elegans strain exhibits hypersensitivity to ER stress and increased UPR. Using biochemical and genetic approaches, we identify JAMP as important component for coordinated clearance of misfolded proteins from the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Animales , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/patología , Células HeLa , Humanos , Glicoproteínas de Membrana/deficiencia , Ratones , Complejos Multiproteicos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Subunidades de Proteína/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA